KY-013 Analog Temperature Sensor Module

arduinomodules.info/ky-013-analog-temperature-sensor-module

Description

Analog Temperature Sensor module KY-o13 for Arduino, measures ambient temperature based on resistance of the thermistor.

KY-013 Specifications

The KY-013 Analog Temperature Sensor module consist of a NTC thermistor and a $10 \mathrm{k} \Omega$ resistor. The resistance of the thermistor varies with surrounding temperature, we'll use the Steinhart-Hart equation to derive precise temperature of the thermistor.

Operating Voltage	5 V
Temperature measurement range	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}\left[-67^{\circ} \mathrm{F}\right.$ to $\left.257^{\circ} \mathrm{F}\right]$
Measurement Accuracy	$\pm 0.5^{\circ} \mathrm{C}$

KY-013 Connection Diagram

Connect board's power line (middle) and ground (-) to 5 V and GND respectively. Connect signal (S) to pin Ao on the Arduino.

KY-013	Arduino
S	A0
middle	5 V
-	GND

Some KY-o13 boards are labeled incorrectly, if you are getting inverted readings (temperature drops when sensor is heated) try swapping power(middle) and ground (-).

fritzing
click to enlarge

KY-013 Example Code

The following Arduino Sketch will derive the temperature of the thermistor using the Steinhart-Hart equation. The code will return temperature in Celcius, uncomment line 17 to get temperature in farenheit.

```
int ThermistorPin = A0;
int Vo;
float R1 = 10000; // value of R1 on board
float logR2, R2, T;
float c1 = 0.001129148, c2 = 0.000234125, c3 = 0.0000000876741; //steinhart-hart
coeficients for thermistor
void setup() {
    Serial.begin(9600);
}
void loop() {
    Vo = analogRead(ThermistorPin);
    R2 = R1 * (1023.0 / (float)Vo - 1.0); //calculate resistance on thermistor
    logR2 = log(R2);
    T = (1.0 / (c1 + c2*logR2 + c3*logR2*logR2*logR2)); // temperature in Kelvin
    T = T - 273.15; //convert Kelvin to Celcius
    // T = (T * 9.0)/ 5.0 + 32.0; //convert Celcius to Farenheit
    Serial.print("Temperature: ");
    Serial.print(T);
    Serial.println(" C");
    delay(500);
}
```

The coeficients only apply to boards with a $10 \mathrm{~K} \Omega$ thermistors, some rare boards have $100 \mathrm{~K} \Omega$ thermistors and need different coeficients.
If the displayed temperature drops when heating the thermistor and viceversa a try swapping power and ground, apparently these boards are commonly mislabeled.

